
Vibrational spectroscopy 
 

Infrared Spectrometry 

 
 
Energy of IR photon is insufficient to cause electronic excitation but can cause 
vibrational or rotational excitation 
 
The frequency dependence of force constant, a classical-mechanical 
approximation. 
 
0.Classical approximation 
Model: a spring and ball system is attached to a wall. 

 
 
Figure 1. Classical vibration motion. 
 
The force acting on the system is proportional to the force constant, k, and 
displacement, x, measured from the equilibrium position of system 
 
  kxF           1. 
 
The oscillating mass, m, acquires an acceleration, a, and from Newton II. law 
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The solution of this derivative should met the conditions 
 
 1. the function is periodic, 
 2. the second derivative of x is equal to the original function multiplied by  
 -k/m. 
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The function fulfils the conditions if: 
 
         4.  btAx  2cos 
 
where ν is the frequency of vibration, and b is the phase of vibration.  
If b = 0, the first and second derivative of equation 4. 
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When Equations 3. and 4. are compared 
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From Equations 3. and 6. we have, 
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and finally we get the frequency dependence: 
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For a chemical bond force constant is called bond strength. 
 
1. Diatomic molecules 

 
Figure 2. Equilibrium distance: r1, displacement: r2 – r1. 
 
For a diatomics with atomic masses m1 and m2 Eq. 7 is given 
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μ is the reduced mass representing a single mass having the same vibrating 
properties as m1 and m2 produce. 
 
1.1 Harmonic oscillator.  
When F = -kx law is valid harmonic oscillator approximation can be applied for 
the description of energetics of molecular vibrations. 
 
The displacement, can be defined as (see Figure 2.), 
 
 ,  12 rrx 
 
and x can be positive, when bond is stretched or that can be negative, when 
restoring force makes the bond distance less than the equilibrium bond distance. 
 
The equilibrium condition: F = 0, x = 0. 
 
 
 

 3



 
Potential energy, Vv. 
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The graph of this function is a perfect parabola (see Figure 3.) 
 
Quantum mechanical energy term 
According to the law of classical mechanics a diatomics can have any 
amplitude, consequently can take any potential energy on parabola.  
By the law of quantum mechanics, the allowed energies of a diatomics are 
restricted to the vibrational levels.  
 
          10.    hE 2/1vv

 
In equation 10 v represents the quantum number, v = 1, 2, 3 ... . The change in 
quantum number for a harmonic oscillator is called vibration selection rule: 
 
  1v 
 
It means that the vibrating system can exclusively absorb the energy difference 
between two subsequent vibrational level. 
 
In equations (see Figure 3.) we show 
 
     hE 2/100

    hE 2/111  
         11.  hEEE 01v

 
The energy difference,  is quantized, and equal to the energy of exciting 
photon, . Equation 11. denotes that the energy difference is independent of 
the level number, so the levels are equidistant. 

vE
h

  

 4



Anharmonic
oscillator

V
v

r
0

Harmonic 
oscillator

2

1

0

Bond distance

 

 
Figure 3. Potential energy distance functions. Harmonic oscillator: dotted line, 
anharmonic oscillator: solid line.  
 
The shape of parabola depends on the force constant (see Eq. 9.). The stronger 
the bond the narrower the parabola. The lengths of a level is equal to twice of the 
amplitude of the motion. 
Eq. 9 can be given also in terms of force constant and reduced mass, 
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1.2 Anharmonic oscillator.  
The harmonic oscillator approximation refers to the lowest energy vibration 
levels, where amplitude is small. The anharmonic oscillator approximation 
models the true function well (solid line on Fig. 3.). A power series gives the 
energy in wavenumber term 
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Where ω0, xe, ye are constants. 
 
Selection rule: (overtones). Levels are not equidistant, 
which concludes the form of Eq. 12.  

etc.3...2, 1,v 

At room temperature the 0th level is densely populated, therefore the 0 → 1 
transition is observed in common, for which harmonic oscillator model fits 
perfectly well. The intensity of first overtone band is 1/10 of ground vibrational 
band. 
 
Types of Molecular Vibrations 
 
Stretch: change in bond length Bend: change in bond angle 
Stretch symmetric scissoring 
Stretch asymmetric wagging 
 rocking 
 twisting/torsion 
 
General selection rule: 
Molecule must have a change in dipole moment due to vibration or 
rotation to absorb IR radiation. 
 
2.Vibrations of polyatomic molecules, normal modes 
For a molecule with N atoms, each atom has three motional degrees of freedom- 
one each for the translation about the x, y, and z Cartesian axes of the molecule-
based coordinate system. Thus, the molecule possesses a total of 3N degrees of 
freedom. 
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Chemical bonds, which for the moment can be thought of a spring connectors 
between atoms, serve to constrain the motion of the atoms to well defined 
vibrational modes.  
 
Linear molecules have three unique translations, but only two unique rotations. 
(The rotation about the bond axis does not count, since it changes neither 
positions of the atoms, nor does it change the angular momentum). Thus, from 
the total of 3N degrees of freedom, we subtract three translations (on the x, y, 
and z directions) and two rotations, leaving 3N-5 vibrational degrees of freedom. 
 
For a diatomic molecule, 3N-5 vibrational degrees of freedom is consistent with 
the single vibration along the bond axis. 
Consider now carbon dioxide, O=C=O. The 3N-5 rule for vibrational degrees of 
freedom predicts 4 vibrations. If the molecule lies along the z-axis, these 
vibrations are the symmetric stretch, the anti-symmetric stretch, and a symmetric 
bend in each of the xz and yz planes. 

 
Figure 4. 
 
Non-linear polyatomic molecules have three unique rotational degrees of 
freedom, so they all have 3N-6 vibrational degrees of freedom. Consider now 
the non-linear molecule water: its three vibrations are the symmetric and anti-
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symmetric O-H stretches, and the bending motion in the molecular plane. All 
vibrational motions change the molecular dipole moment, so all are infrared 
active, or electric-dipole allowed transitions. 
 
 Mechanical degree of freedom 
molecule total translation rotation vibration 
linear 3N 3 2 3N-5 
non-linear 3N 3 3 3N-6 
 
A chemical group can have both stretching and deformational vibration infrared 
active. In this case the stretching band always appears at greater energies than 
the deformational one. E.g. see table below 
 
 
 
Table  
Group frequency / cm-1 Functional group / assignment 
2970 - 2950 C-H in CH3- / asym. stretch 
1470 - 1430 C-H in CH3- / asym. bending 
1370 - 1365 C-H in CH3- / sym. bending 
 

 
 

 8



Figure 5. Types of molecular vibrations for a triatomic non-linear molecule.  
 
3.Isotope effect 
From Equations 7a and 10 we get 
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Turning to wavenumber term 
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From assignment of spectral data the wavenumber of an absorption band and the 
reduced mass, μ of oscillating atoms in the IR range is known. The force 
constant, k for a particular vibration can be calculated by using Eq. 13. 
 
An isotope substitution causes change in reduced mass and consequently in 
wavenumber of the band position. The force constant remains the same by 
isotope exchange of 35Cl to 37Cl in HCl. The wavenumber shift of H-Cl 
stretching can be given from Eq. 13. 
 
 2/1.~  μconst  
 
Recalling: 
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The lighter isotope (35Cl) has a band at higher wavenumber. 
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The IR spectrum of laboratory air. 
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