
Rotational spectroscopy 
 
Mechanical properties of rotation 
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The moment of inertia of a molecule is a measure of how difficult it is to 
rotationally accelerate the molecule - the larger the moment of inertia, the 
smaller the increase in angular momentum for a given applied torque. 
 
Because I depends on both the mass of the atoms and the geometry of the 
molecule, the rotational spectroscopy will provide us with information about 
bond lengths and bond angles.   
 
Angular momentum: J = I·ω 
 
where ω = 2π·ν, the angular velocity of a rotating object with ν rotational 
frequency. 
 
The moment of inertia of a diatomics 
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Figure 1. The rotation produces I perpendicular to the plane of rotation. 
 
The bond distance: R = r1 + r2 
 
The center of mass has a physical property, 
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The moment of inertia: 
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The radial distances from masscenter can be given by bond length 
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Substituting r1 and r2 into Equation 2. we get for I 
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Introducing reduced mass, μ 
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For multi-atom molecules, the reduced mass is determined by replacing the two 
values of mi with the total masses of the molecule to both sides of the bond in 
question. In other words, the multi-atom molecule is calculated as though it is a 
molecule with two atoms, where each atom is the part of the molecule on either 
side of the bond. 
 
In general, the rotational properties of any molecule can be expressed using the 
moments of inertia about three mutually perpendicular axes. 
 
Axes are labelled: Ia, Ib and Ic, choosing the axes in such a way that 
 
  abc III 
 
Note that for linear molecules, the moment of inertia around the molecular axis 
is zero, as all the atoms lie on the axis of rotation so are at zero distance from it. 
 
Model 1: rigid rotor. 
The amplitude of a vibration is small compared to the bond length of the rotating 
molecule, therefore bond length can be regarded as constant. 
We suppose that molecules are rigid rotors, bodies that do not distort under the 
stress of rotation. Rigid rotors can be classified into four types: 
 
Spherical rotors have three equal moments of inertia (e.g. CH4, SF6) 
  abc III 

 
Symmetric rotors have two equal moments of inertia (e.g. CH3Cl, NH3, C6H6). 

  abc III 
 

Linear rotors have one moment of inertia (that around the molecular axis) equal 
to zero (e.g.CO2, HCl, CH≡CH). 

0abc  III  
 

Asymmetric rotors have three different moments of inertia. 
  abc III 
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Classical mechanics gives expressions for the energy of a rotating body in terms 
of the angular momentum, and we may obtain the analogous quantum 
mechanical expressions by substitution of the quantum expressions for angular 
momentum. 
 
The classical expression for a body rotating about a given axis with angular 
velocity ω is 
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Note the similarity to the classical expression for linear kinetic energy. 
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The moment of inertia is the rotational equivalent of the mass, and the angular 
velocity replaces the linear velocity. A body free to rotate about three mutually 
perpendicular axes has an energy given by: 
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Equation 2. can be transformed 
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to substitute angular momentum, J. 
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For a symmetric rotor Equation 3. takes the form 
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According to classical theory, radiation of any frequency may be absorbed by a 
molecule with a permanent dipole moment since there is no restriction on the 
rotational frequency of the molecule, but quantum theory requires that a 
molecule may only possess energies given by equation, 
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and so only finite quanta of energy may be absorbed or emitted.  
 
When J2 in Equation 3a. is replaced by J(J+1)h2/(4π2), the result is Equation 4., 
which is the solution of Schrödinger equation for rotation energy. 
 
The magnitude of the angular momentum was given by quantum number, J, 
which was restricted to positive integral values (and zero).  
 
 J= 0, 1, 2, 3,...; and ΔJ = ±1 
 
Selection rule. A molecule must have a permanent dipole moment, i.e. µ ≠ 0, 
for absorbing microwave radiation. 
 
The rotation energy in Equation 4. is frequently given in wavenumber terms, and 
a rotation constant B is can be separated. 
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The rotation constant, B of a molecule is characteristic to the nature of molecule, 
and independent of J. 
The greater the molecule the higher its moment of inertia and B becomes 
smaller. If the velocity of light is given in cm/s units the unit of B is cm-1. 
 
System can only absorb that quantum of energy or wavenumber of microwave 
radiation, which can be given as the difference between two subsequent levels of 
rotation level series, J1 – J2. 
 
In this notation J1 and J2 mean the lower level and upper level respectively, and 
the difference between them is 
 
 J2 – J1 = 1          6. 
 
Transition J1 → J2: 
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The wavenumber can be phrased either by lower rotation level 
 
  12 ~

1  JB          7. 
 
or by upper rotation level. 
 
 22~ JB           7a. 
 
This wavenumber equals to the peak position of one band in the vibrational 
spectrum. 

 
Figure 2. Energy level spacing for linear or spherical rotor. 
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Table 1. for rotation levels 
 

J 1cm/~   1cm/~   
1 4B  
2 6B 2B 
3 8B 2B 
4 10B 2B 

 
 
The rotational levels are not equidistant, which can be seen from the second 
column of Table 1. 
 
Peak separation Δν. 
The rotation spectra contains peak series with peak separation equal to each 
other. 
 
   BBJJB 2212~

11        8. 
 
The result given in Eq. 8 originates from Eq. 7. 
 
Equation 4. for Erot(J) is only approximate. In order to provide a better 
description of the energy levels of a diatomic molecule, a centrifugal distortion 
term is added to the energy. 
This takes into account of the fact that as a real molecule rotates faster and faster 
(i.e. with more energy), the bond stretches a little (if you swing a weight 
attached to a piece of elastic in a circle, you can observe the same effect on a 
macroscopic scale). 
 
      22 11  JJDBJJJE Jrot       9. 
 
DJ is called the centrifugal distortion constant, and is several orders of 
magnitude smaller than B. 
 
The spectrum 
Separations of rotational energy levels correspond to the microwave region of 
the electromagnetic spectrum. 
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Figure 3. Rotational Spectrum of NH3 
Example 
 

 
Figure 4. To the moment of inertia of water. 
 
Calculate the moment of inertia of water by using data  
 
 the HOH bond angle, 2Φ=104.5º, 
 the HO bond length, R = 95.4 pm 
 the mass of proton mH = 1.67 10-27 kg 
 
We add up moments of inertia of two hydrogen and one oxygen atoms 

 9
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The oxygen atom is on the axis therefore it has zero moment of inertia. 
 
  m1054.725.52sin104.95sin 1112   RrH

 

    24721127 kgm109.11054.71067.12  I
Rotational-vibrational fine structure 
In gas phase the fine structure belonging to a vibration band shows rotation fine 
splitting. In some cases, a single vibration transition appears as triplet band 
containing P, Q, R branches, as a result of vibration rotation interaction. 
Vibration alters the length and angular momentum of rotating bond periodically. 
 
This interaction can be described by the sum of vibrational and rotational 
energies. 
 
 

 
Figure 5. Infrared vibration-rotation bands of CO2 and N2O are shown.  
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The rotation quantum number J changes by ±1 during the vibrational transition 
of a diatomic molecule, and selection rules also allow ΔJ = 0. 
 
The combined rotation vibration terms given in wavenumber 
 
      1~2/1v,v~

v  JBJJ  
 
Transition P: 
 
 
 v → v+1   J+1 → J 
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    12~,v~

v   JBJ         10. 
 
The result in Eq. 10 can be seen in Fig. 6., the lowest energy branch. 

 
Figure 6. Transitions between the lowest vibrational state, denoted v=0, and the 
next highest vibrational state (v=1). Each vibrational state has many rotational 
levels denoted by a rotational quantum number (J' for the upper vibrational state, 
and J" for the lower). The spacing between rotational levels of the same 
vibrational state has been greatly exaggerated for clarity. 
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Transition Q (in some cases forbidden): 
 
 v → v+1   J → J 
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Transition R: 
 
 v → v+1   J → J+1 
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v   JBJ         12. 
 
 

 
Figure. 7. Vapour spectrum of acetone with characteristic Q-branch slitting, 
denoted by Q.  
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